

CyberCrime Shield
 cybercrimeshield.org

 1

Smart Contract Audit

Report

https://tronscan.org/#/contract/TQ4F8Gr1qRKcMva64qYweAJNAVtgfj6ZJd/code

https://tronscan.org/#/contract/THPMGRqM7asytcp7nMu6MBR8X3dV3NiLa8/code

ID:2328118

20.11.2020

Uswap

https://tronscan.org/%23/contract/TQ4F8Gr1qRKcMva64qYweAJNAVtgfj6ZJd/code
https://tronscan.org/#/contract/THPMGRqM7asytcp7nMu6MBR8X3dV3NiLa8/code

CyberCrime Shield
 cybercrimeshield.org

 2

INTRODUCTION

Blockchain platforms, such as Nakamoto’s Bitcoin, enable the trade of crypto-

currencies between mutually mistrusting parties.

To eliminate the need for trust, Nakomoto designed a peer-to-peer network that

enables its peers to agree on the trading transactions.

Vitalik Buterin identified the applicability of decentralized computation beyond

trading, and designed the Ethereum blockchain which supports the execution of

programs, called smart contracts, written in Turing-complete languages.

Smart contracts have shown to be applicable in many domains including financial

industry, public sector and cross-industry.

The increased adoption of smart contracts demands strong security guarantees.

Unfortunately, it is challenging to create smart contracts that are free of security

bugs.

As a consequence, critical vulnerabilities in smart contracts are discovered and

exploited every few months.

In turn, these exploits have led to losses reaching billions worth of USD in the past

few years.

It is apparent that effective security checks for smart contracts are strictly needed.

CyberCrime Shield
 cybercrimeshield.org

 3

SMART CONTRACT

Factory

https://tronscan.org/#/contract/TQ4F8Gr1qRKcMva64qYweAJNAVtgfj6ZJd/code

Router

https://tronscan.org/#/contract/THPMGRqM7asytcp7nMu6MBR8X3dV3NiLa8/code

DISCLAIMER

This text is not a call to participate in the project and it’s only a description of the smart

contract work at the specified address, it’s possible issues and bugs. Remember that

you do all the financial actions only at your own risk.

DESCRIPTION

The project is an indirect clone of Uniswap V2 which is modified to suite for tron

blockchain. It consists of two contracts, uswap, which creates a trc20 token

named Uswap, deals with the token pair and a factory which creates these pairs.

Another contract named uswap.route which deals with adding and removing

liquidity of the token pairs. It also consists of a number of utility functions for

frontend development.

https://tronscan.org/#/contract/TQ4F8Gr1qRKcMva64qYweAJNAVtgfj6ZJd/code
https://tronscan.org/#/contract/THPMGRqM7asytcp7nMu6MBR8X3dV3NiLa8/code

CyberCrime Shield
 cybercrimeshield.org

 4

VARIABLES

Uswap

 string public constant name = 'USwap';

 string public constant symbol = 'USP';

 uint8 public constant decimals = 18;

 uint256 public totalSupply;

 mapping(address => uint256) public balanceOf;

 mapping(address => mapping(address => uint256)) public allowance;

 uint256 public constant MINIMUM_LIQUIDITY = 1000;

 uint112 private reserve0;

 uint112 private reserve1;

 uint32 private blockTimestampLast;

 uint256 private unlocked = 1;

 address public factory;

 address public token0;

 address public token1;

 uint256 public price0CumulativeLast;

 uint256 public price1CumulativeLast;

 uint256 public kLast;

 address public feeTo;

 address public feeToSetter;

 mapping(address => mapping(address => address)) public pairs;

 address[] public allPairs;

CyberCrime Shield
 cybercrimeshield.org

 5

Uswap.route

address public factory;

address public wtrx;

FUNCTIONS

Uswap

Line120-125: _mint() – Mints “value” number of tokens and sends it to “to”

address (Internal)

Line 127-132: _burn() – Burns “value” number of tokens from “from” address

(Internal)

Line 134-138: _approve() – Approves “spender” to spend “value” amount of

tokens from “owner” address (Private)

Line 140-145: _transfer() – Transfers “value” amount of token from address

“from” to address “to” (Private)

Line 147-151: approve() – Caller function of _approve() (External)

Line 153-157: transfer() – Caller function of _transfer() (External)

Line 159-167: transferFrom() – Transfers “value” amount of token from one

another account to “to” account according to the allowance (External)

Line 191-197: lock() – Modifier which sets access to other functions 199-201:

constructor() – Sets factory as contract creator address (Public)

Line 203-206: _safeTransfer() – Calls an encoded function from an already

deployed contract at address “token” (Private)

CyberCrime Shield
 cybercrimeshield.org

 6

Line 208-224: _update() – Updates “price0CumulativeLast” and

“price1CumulativeLast” as sum of corresponding variables with encoded value of

“_reserve[x]” and high precision division is done on (“_reserve[x]” *

“timeElasped”) (Private)

Line 226-246: _mintFee() – Sets “feeTo” address by calling “feeTo()” function from

factory contract. Checks if “feeTo” not equal to address(0) and stores the Boolean

value to “feeOn” (Private)

Line 248-253: initialize() – Initializes “token0” and “token1” for the pair (External)

Line 255-280: mint() – Get reserve values and token balances. Then “amount[x]”

is updated as balance[x] - _reserve[x]. (External)

Line 282-307: burn() – Burns token from balance of contract address and updates

the total balance. Transfers each token from the pair to the “to” address too

(External)

Line 309-339: swap() – Function to exchange token according to the pair. Only

allows exchange if liquidity is sufficient. (External)

Line 341-344: skim() – Transfers both tokens from the pair to the address “to”

(External)

Line 346-348: sync() – Calls the “_update()” function which will update the

balance of tokens in token pair (External)

Line 350-354: getReserves() – View function to get the reserve values and latest

timestamp (Public)

Line 368-385: createPair() – Creates a trading pair between “tokenA” and

“tokenB” and stores the data in “pair” mapping (External)

Line 387-391: setFeeTo() – Sets the “feeTo” address (External)

Line 393-397: setFeeToSetter() – Sets new “feeToSetter” address (External)

CyberCrime Shield
 cybercrimeshield.org

 7

Line 399-401: getPair() – View function to see pair info of “tokenA” and “tokenB”

(External)

Line 403-405: allPairsLength() – View function to retrieve total number of pairs

created

Uswap.route

(Description of functions in standard libraries are skipped)

Line 189-216: _addLiquidity() – Function to add liquidity for a certain token pair. If

the pair doesn’t exist, function automatically creates it.

Line 218-228: _swap() – Swap function which swaps tokens according to their

availability in pool

Line 230-239: addLiquidity() – Caller function for _addLiquidity().

Line 241-254: addLiquidityTRX() – Adds TRX liquidity to the pool

Line 256-267: removeLiquidity() – Removes liquidity from the pool

Line 269-275: removeLiquididtyTRX() – Removes TRX from the pool

Line 277-285: swapExactTokensForTokens() – Swaps first token for receiving

second in the pair

Line 287-295: swapTokensForExactTokens() – Swaps second token for receiving

first in the pair

Line 297-309: swapExactTRXForTokens() – Swaps tron for token (Only accepts

exact trx value)

Line 311-324: swapTRXForExactTokens() – Swaps tron for token (Only accepts

exact token value)

Line 326-339: swapExactTokensForTRX() – Swaps token for trx (Only accepts exact

token value)

CyberCrime Shield
 cybercrimeshield.org

 8

Line 341-355: swapTokensForExactTRX() – Swaps token for trx (Only accepts exact

trx value)

Line 357-359: getAmountsIn() – Returns input amount

Line 361-363: getAmountsOut() – Returns output amount

Line 365-370: calcPairLiquidity() – Calculates new pair liquidity

Line 372-377: calcPairSwap() – Calculates price impact on swapping

Line 379-388: getPair() – Returns pair info

Line 390-406: getPairs() – Returns a certain number of pairs info

BEST PRACTICIES

The code has written according to all Secure Development Recommendations.

The libraries used inside are all standard and secure. Code is properly organized

and indented.

CRITICAL SEVERITY

No errors or vulnerabilities affecting the described functionality of the contract

have been detected. No backdoors or overflows are present in the contract.

MEDIUM SEVERITY

Line 309 – No coping mechanism for possible stack too deep error (uswap)

• No domain separator used following the time schedule

CyberCrime Shield
 cybercrimeshield.org

 9

LOW SEVERITY

• SafeMath operations are used unnecessarily. It can be avoided in places

with no chance of overflows

OTHER ANALYSIS

Line 354,385 – Storing token address in a different variable will help reduce

gas fee

• No functions for supporting tokens which uses fee on transfer

AUDIT SUMMARY

 The contract have been found to be free of critical security issues.

 Contract has well-formed structure.

 User input validation is performed.

 No overflows are present in the contract.

REFERENCES

[1] The DAO Attacked: Code Issue Leads to 60 Million Ether Theft.

[2] Etherdice. Available from: https://etherdice.io/.

[3] King of Ether. Available from: https://github.com/kieranelby/

KingOfTheEtherThrone/blob/v0.4.0/contracts/KingOfTheEtherThrone.sol.

[4] King of Ether, Postmortem. Available from: https://www.

CyberCrime Shield
 cybercrimeshield.org

 10

kingoftheether.com/postmortem.html.

[5] Reentrancy Woes in Smart Contracts.

[6] theDAO. Available from: https://etherscan.io/address/

0xbb9bc244d798123fde783fcc1c72d3bb8c189413.

[7] Accidental bug may have frozen $280 million worth of digital coin ether in

a cryptocurrency wallet. Available from: https://www.cnbc.com/2017/11/

08/accidental-bug-may-have-frozen...

[8] Blockchain is empowering the future of insurance. blockchain-is-empowering-the-

future-of-insurance/.

[9] ETHLance. Available from: http://ethlance.com/.

[10] An In-Depth Look at the Parity Multisig Bug.

[11] Northern Trust uses blockchain for private equity recordkeeping. Available from:

http://www.reuters.com/article/nthern-trust-ibm-blockchain-idUSL1N1G61TX.

[12] Parity Ethereum Client. (2017). Available from: https://github.com/

paritytech/parity.

[13] Security Alert. (2017). Available from: https://paritytech.io/blog/

security-alert.html.

[14] Submarine Sends: IC3’s Plan to Clamp Down on ICO

Cheats. Available from: https://www.coindesk.com/

submarine-sends-inside-ic3s-plan-to-clamp-...

[15] Ethereum Smart Contract Security Best Practices.. Available from:

https://consensys.github.io/smart-contract-best-practices/.

[16] Mythril. Available from: https://github.com/ConsenSys/mythril.

[17] Parity Wallet Library. Available from: https://github.com/

paritytech/parity/blob/4d08e7b0aec46443bf26547b17d10cb302672835/js/src/

contracts/snippets/enhanced-wallet.sol.

CyberCrime Shield
 cybercrimeshield.org

 11

[18] Solidity, high-level language for writing smart contracts. Available

from: https://solidity.readthedocs.io/en/develop/.

[19] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A Survey of Attacks

on Ethereum Smart Contracts (SoK). In Principles of Security and Trust - 6th

International Conference, POST. 164–186.

[20] Massimo Bartoletti, Salvatore Carta, Tiziana Cimoli, and Roberto Saia.

Dissecting Ponzi schemes on Ethereum: identification, analysis, and impact.

CoRR abs/1703.03779

[21] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha

Gollamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem Rastogi,

Thomas Sibut-Pinote, Nikhil Swamy, and Santiago Zanella-Béguelin. Formal

Verification of Smart Contracts: Short Paper. In Proceedings of the ACM

Workshop on Programming Languages and Analysis for Security (PLAS). 91–96.

[22] Vitalik Buterin. Ethereum: a next generation smart contract and decentralized

application platform. Available from: https://github.com/ethereum/

wiki/wiki/White-Paper.

[23] https://github.com/ethereum/solidity/issues/

[24] https://github.com/tronprotocol/java-tron/issues

